Smart Meter Monitoring – Why TimeSeries is the only option

Cosmo IBM Informix, Product Development

Session: B12 April 27th 2010: 15:30 – 16:30

Smart Meter Monitoring

- Why Smart meters?
 - Energy Resource Issues
 - We Must Know What Our Energy Usage Is
- Why now Who's Interested?
 - Individuals
 - Utility Companies
 - Governments
- DEHEMS
 - An EU Initiative for Understanding Resource Usage
 - Utilises Smart Meter Data
 - Complex Data Challenge

Smart Meter Monitoring Challenges

- Beyond DEHEMS
- The Challenges
 - 1. Large Data Volumes
 - 2. High Insert Rate
 - 3. Complex Analysis
- The Answers
 - 1. Informix TimeSeries
 - 2. Informix TimeSeries
 - 3. Informix TimeSeries

Energy Usage Issues

What are the Goals

- Reduction in Energy Usage
 - Increasing cost
 - Political issues with global power market economy
- Reduction in Emissions
 - EC goal is 20% emissions reduction in 2020 as compared to 1990
 - UK goal is 60% by 2050

Energy Usage Issues

- 2020 is not very far away
 - Less than 3,600 days
- Long lead times for new, "clean" energy supply

- Lasting legacy of energy inefficiency
 - 80% of refrigerators bought in 2007 will be in use in 2020
 - Less than 1/3 of industrial infrastructure will be replaced by 2020
 - Over 20% of cars bought in 2007 will still be on the road in 2020

We Must Act Now

- Supply side will not be ready in time
- Humans are essential to the solution
- Household efficiency a priority
 - 25-30% of carbon emissions are from regular households
 - 80% of home energy usage is heating
 - EC projects 27% savings through efficiency in buildings

What is required?

Measurement

Metrics: What is being measured

Context: How do you compare to others and norms?

History: How am I changing over time?

Trust: Can I trust this is real and personal?

Detail: Is there enough granularity to explain what is happening?

Models

Projections: How do today's actions impact on tomorrow's metrics?

Management

Access: Does information find me or do I find information?

– Control; Can I take action?

Smart Power Consumption Meters

- In the past, utility meters have been used to provide monthly or quarterly readings for billing purposes
- A Smart Meter is able to show instantaneous usage instead of simply indicating previous, historical usage
- Short timeframe snapshots of consumption can be analysed for patterns of usage

Who is Using Smart Meters

- Utility Companies
 - Main drive is <u>not</u> reducing billing costs
 - Better analysis of usage patterns
 - Can different tariffs change energy consumption
- Consumers
 - Looking to reduce energy costs
 - Wanting to improve their green credentials
- Governments
 - Need to show improvements in emissions
 - Want to reduce energy consumption/reliance

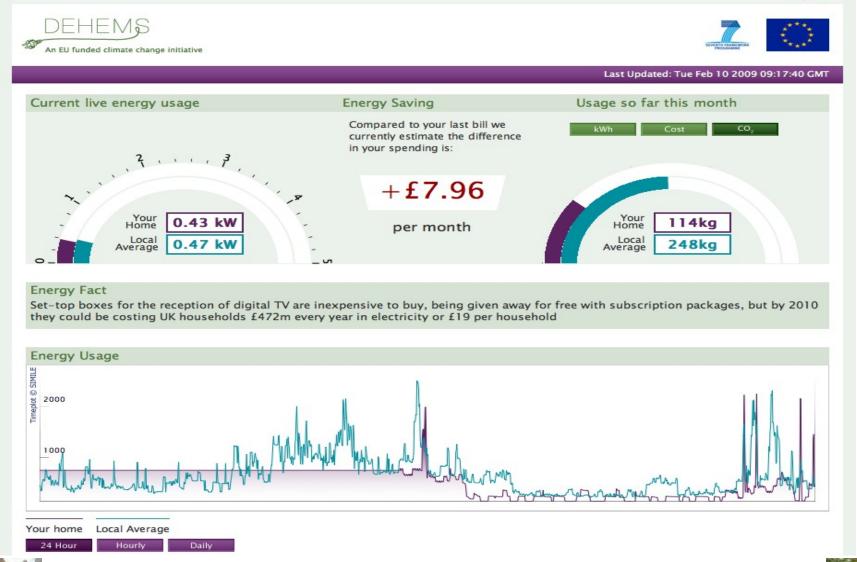
DEHEMS

Digital Environment Home Energy Management System

DEHEMS Consortium

- Manchester City Council [United Kingdom]
- Technical University of Cluj-Napoca [Romania]
- Clicks and Links Ltd [United Kingdom]
- Hildebrand Technology Ltd [United Kingdom]
- Bristol City Council [United Kingdom]
- Corinex Communications [Slovakia]
- Plovdiv Municipality [Bulgaria]
- Ivanovo Municipality [Bulgaria]
- Institute e-Austria Timisoara
- University of Rousse [Bulgaria]
- Birmingham Council [United Kingdom]
- University of Coventry [United Kingdom]
- The Centre [Belgium]
- University of Salford [United Kingdom]

DEHEMS Approach

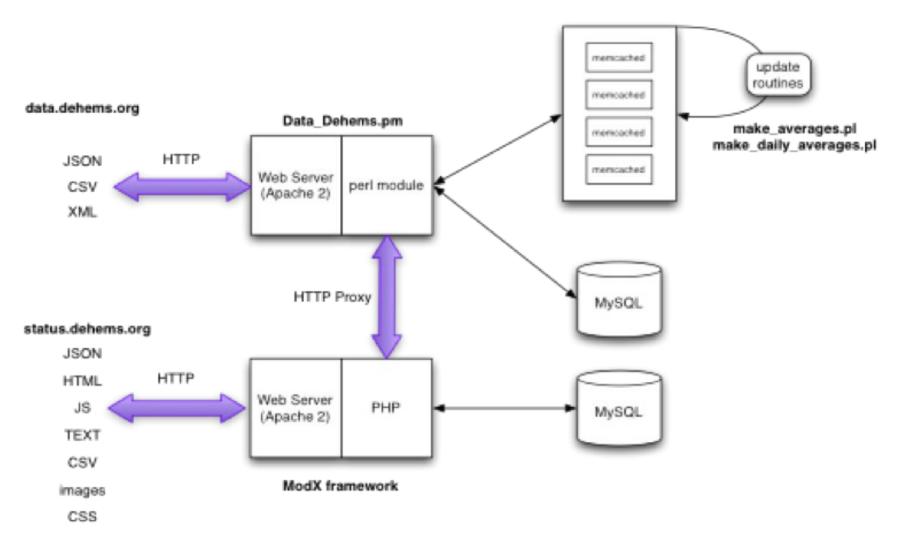

- Energy performance measurement rather that total consumption
- Community dimension to behaviour change
 - Comparison
 - Education
 - Feedback
- Enabling easy, effective action

Consumer Education

Living Labs

- Observations are real and dynamic
- Take requirements from end users
- Makes R&D market ready
- Simple pilot of 250 homes
- Significant excess public demand

Results


- People want to engage with issue
- Immediate impact in behaviour change
- New behaviour seems to be sustained
- Big scope for community functions
- People want to know more
- Target of 20% savings is very achievable

Pilot System Architecture

Future Projects

- UK Government DECC
 - Department of Energy and Climate Change
- Initial Tender for 10,000 homes to be monitored
 - Won by IBM Business Partner Hildebrand
- Prospect of 3 million homes in the future
 - 3,000,000 meters
 - A set of 26 readings every minute
 - 4TB raw data per week

Hildbrand + Informix 3,000,000 Meter Challenge

3 Million Meters

- 3,000,000 Homes to have Smart Meters
- Up to 26 values recorded
 - Meter ID
 - Timestamp
 - 3 Electricity phases
 - 1 Gas reading
 - 20 Individual electrical sockets
- Initial data collected every 6 seconds
 - Aggregated to per-minute readings

3 Million Readings Per-Minute

- 3,000,000 meters, one reading every minute
- High data rate
 - -60*24 = 1440 readings per day
 - 50,000 Inserts per-second
- Large data volume
 - 12 Character Meter ID
 - 11 Byte timestamp YEAR TO MINUTE
 - 24 * 2 byte values (optimistically using SMALLINT)
 - Approaching 500Gb per day for data + simple index

Informix TimeSeries Efficiency

- Does not need to store NULL data
- Stores values as one long row including index + data on same page
- With typical 50% socket usage, storage required is ¼ of standard relational method
- Reduces I/O and physical media costs

Data Analysis

- Typical queries will look at sequence of readings over time
 - For an individual meter
 - Comparison between one meter and another or an average
- Relational storage requires series of index then multiple data page lookups
 - Data on a page will be for multiple, random meters
 - Data returned as multiple tuples which client must process
 - Missing data points must be generated
- TimeSeries data for one meter is held on sequential pages in index
 - No need for separate data page lookups
 - Much faster to build a sequence of readings
 - New TimeSeries datatype can be manipulated in the server
 - Missing values interpolated in the server

Example Query

- A common problem is to apply a tariff to the usage to calculate actual or predicted cost
- Complex tariffs exist which can only be sensibly held as TimeSeries themselves

Smart Meter Monitoring Why Informix TimeSeries is the only option

Cosmo Informix Product Development

cosmo@uk.ibm.com

